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® Observing schedules.

® Overall design of the missions and
instruments.

® \We need to deal with biases as part of our sensor
web architecture.




For Unmanned Ariel Vehicles (UAVs) the sophistication of

autonomy has been growing over the last twenty years.
The methodologies used include:

optimization
Information theory
computer vision
mixed integer linear
programming

fuzzy logic

genetic algorithms

artificial cognition
geographic information
systems (GIS)

set partition theory
vehicle health status
threat assessments




' complex robotics platforms usec
variety of tasks. For example, UAVs can be used for:

environmental monitoring ® studying the movement of
(weather and/or pollution) agricultural threat agents,
traffic monitoring pollen, plant pathogens,
surveillance and other biological
intelligence gathering particles

terrain mapping ® crop condition
emergency services ® photogrammetry
assistance ® surveying




together.

® The assets may be of different kinds, UAVSs,
Unmanned Ground Vehicles (UGVs), Underwater
Unmanned Vehicles (UUVs), and Unattended
Ground Sensors (UGS).

® The tasks/goals may, or may not, have been
defined a priori.




baIIoon sondes Iong duratlon baIIoons UUVs), and
ground based.

There are also a variety of measurement types and a
variety of purposes for these measurements, not all of
which are known a priori.

In addition, a given sensor may have a variety of modes of
operation.

The observations may have significant power and
communication requirements associated with them.




The knowledee of ienorance is

the beginning o ‘mowleclge

Ancient Greek Saying




understanding.
® The theoretical understanding is provided by a

deterministic model of the system being
observed.

® [he observational understanding is provided by
prior sensor web observations incorporated
through a data assimilation system (in this case a
full Kalman filter).

8 The autonomy is provided by objective
optimization.
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measure and the required mode, time and location

of the observations, i.e. to define in real time the
observing system targets.

® Metrics of how important it is to know this
information (information content) are used to
assign a priority to each observation.

® The metrics are passed in real time to the Sensor
Web observation scheduler to implement the
observation plan for the next observing cycle.
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Parallel Data Queries (MP
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Synchronization
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AutoChem

Full Kalman Filter
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Notify When Task Complete
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Like the database queries, the AutoChem system is also implemented
in a Massively Parallel way using a master slave architecture.
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survey m|SS|ons) we may Want to target regions where we
know the state of the system with the highest precision for
our validation. In this case we would use targets defined
by the minima In our state vector uncertainty.

Conversely, during routine operation we would like the
observing system to be adaptively reducing the total
uncertainty, so would use targets defined on the maxima
In our state vector uncertainty.

It may be of use to have feature recognition as part of

the targeting. For example, we may be focusing on ship
tracks, or jet streaks in the weather systems.
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constituents that characterizes their information
content. This list is obviously a function of the

question asked as well as time and location.

® One example of such an index could be based on
answering the question, in going from time t to time
t+At what are the key chemical players?

® [he photochemical box model M describes the
transformation of vector x from time t to time t:+At.

Xt+At) = M(t,xt)
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Figure (@) shows the linearized model matrix for a local solar time 12:15 at a potential temperature
of 426 K (=18 km) on 30 March 1992 at 38°S. (b) shows the chemical information content index, I..

X(t+At) = M(t,xt)




® |maagine a hvbrid

The chemical information content changes with time and location. The panels show some
examples of bow the information index changes with time (at 15 minute intervals) and
location in a vertical profile at 38°S.




Scheduling Autonomy

® S0 our autonomy has reduced to objectively
choosing our targets and for each target
objectively choosing a priority.

® All that remains is to see If our observing sensor

web is capable of observing these targets. For
this we use STK and Scheduler

Many Assets & Many Targets
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® (Genetic algorithms are a particular class of evolutionary algorithms that
use techniques inspired by biological inheritance, mutation, selection, and
crossover (also called recombination).

® The evolution usually starts from a population of randomly generated
individuals and happens in generations. In each generation, the fitness of
every individual in the population is evaluated, multiple individuals are
stochastically selected from the current population (based on their fitness),
and modified (recombined and possibly randomly mutated) to form a new
population.

® The new population is then used in the next iteration of the algorithm.
Commonly, the algorithm terminates when either a maximum number of
generations has been produced, or a satisfactory fithess level has been
reached for the population.




Many Sources of
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® Almost by definition data biases are going to be
an issue with sensor webs as we are fusing data
from so many sources.




Biases are ubiquitous.¥WWhen combining
observations from many sensors over a long
time period biases will always be an issue.

If they are not dealt with they hinder us
addressing the scientific issues the
measurements were taken to address (as the
next set of slides illustrate).




Variations in Stratospheric Cly
Between 1991 and the present

e Data can be biased, maybeasa ® May be observing a proxy for
function of many parameters. what we really want to know.




Constrained by a limited
number-of Cly observations
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Figure 6-8. October zonal mean values of total inorganic chlorine (Cl, in ppb) at 50 hPa and 80°S from CCMs.
Panel (a) shows Cl, and panel (b) difference in Cl, from that in 1980. The symbols in (a) show estimates of Cl,
in the Antarctic lower stratosphere in spring from measurements from the UARS satellite in 1992 and the Aura
satellite in 2005, yielding values around 3 ppb (Douglass et al., 1995; Santee et al., 1996) and around 3.3 ppb

(see Figure 4-8), respectively.
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8 \We need to know the distribution of inorganic
chlorine (Cly) in the stratosphere to:

8 Attribute changes in stratospheric ozone to
changes in halogens.

® Assess the realism of chemistry-climate models.




Long tin?e-series Long time-series
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Cly=HCI+CIONO,+CIO+HOCI
+2C1LO,+2Cl,

Estimating Cl, is hampered by lack of observations

Estimating Cly is hampered by inter-instrument biases
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Andrew Rickert (MSc), registered at the
University of Maryland Baltimore County for
a MSc in Physics. Andy has been been
working on some of the neural network
aspects of this project.
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what do we need to know?
® |mage processing, feature recognition
8 Autonomous target priority based on:
® Information content (how useful is the observation?)
® Hybrid Modes
® Smart scheduler aware of sensor web’s capabilities

® Biases are always going to be an issue, let us deal with
them.

® Objectively optimized design using genetic algorithms.




